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SUMMARY

The ability to reprogram differentiated cells into a
pluripotent state has revealed that the differentiated
state is plastic and reversible. It is evident, therefore,
that mechanisms must be in place to maintain cells
in a differentiated state. Transcription factors that
specify neuronal characteristics have beenwell stud-
ied, but less is known about the mechanisms that
prevent neurons from dedifferentiating to a multipo-
tent, stem cell-like state. Here, we identify Lola as
a transcription factor that is required tomaintain neu-
rons in a differentiated state. We show that Lola
represses neural stem cell genes and cell-cycle
genes in postmitotic neurons. In lola mutants, neu-
rons dedifferentiate, turn on neural stem cell genes,
and begin to divide, forming tumors. Thus, neurons
rather than stem cells or intermediate progenitors
are the tumor-initiating cells in lola mutants.

INTRODUCTION

Waddington’s ‘‘epigenetic landscape’’ model suggests that the

process of cellular differentiation is essentially irreversible (Wad-

dington, 1957). However, it is now clear that differentiated cells

can be reprogrammed into a pluripotent state (Gurdon, 1962; Ta-

kahashi and Yamanaka, 2006) or into an alternative differentiated

state (Vierbuchenetal., 2010).Therefore, thedifferentiatedstateof

cells is not set in stone; cells can dedifferentiate or transdifferenti-

ate.However, themoredifferentiatedacell is, themoredifficult it is

to reprogram (for review, see Pasque et al., 2011), suggesting that

there are active mechanisms in place to maintain cells in a differ-

entiated state. Although there are now many studies defining the

transcription factors that enable reprogramming, less is known

about the mechanisms that act to prevent cells from dedifferenti-

ating. Identification of these mechanisms will be key for fully un-

derstanding reprogramming and for developing safe methods

for dedifferentiating cells in vivo for therapeutic purposes without

inducing cancer (van Es et al., 2012; Schwitalla et al., 2013).

The Drosophila CNS is an attractive model for studying differ-

entiation of neural stem cells and their progeny as well as inves-
D

tigating howmisregulation of self-renewal and differentiation can

lead to tumorigenesis (Wodarz and Gonzalez, 2006; Caussinus

and Hirth, 2007; Doe, 2008; Egger et al., 2008; Neumüller and

Knoblich, 2009). The majority of neural stem cells in the

Drosophila brain and ventral nerve cord (type I neuroblasts) un-

dergo multiple asymmetric divisions whereby they self-renew

while producing daughter cells (GMCs or ganglion mother cells)

that divide only once to give two postmitotic neurons or glial

cells. At each division, cell-fate determinants are segregated

from the neural stem cell to the GMC. These include Prospero

(Doe et al., 1991; Vaessin et al., 1991; Matsuzaki et al., 1992),

Brat (Bello et al., 2006; Betschinger et al., 2006; Lee et al.,

2006b), and Numb (Rhyu et al., 1994), all of which act as tumor

suppressors in the nervous system (Bello et al., 2006; Bet-

schinger et al., 2006; Choksi et al., 2006; Lee et al., 2006a,

2006b; Wang et al., 2006; Bowman et al., 2008). Therefore,

disrupting the neurogenic differentiation pathway can lead to

tumorigenesis.

We showed previously that the atypical homeodomain tran-

scription factor, Prospero, controls the choice between stem

cell self-renewal and differentiation. Prospero represses genes

required for self-renewal, such as neural stem cell genes and

cell-cycle genesbut also is required toactivate genes for neuronal

and glial differentiation (Choksi et al., 2006). In prosperomutants,

GMCs fail to differentiate and revert to a stem cell-like fate. They

continue to divide, express neural stem cell markers, and form

brain tumors (Caussinus and Gonzalez, 2005; Bello et al., 2006;

Betschinger et al., 2006; Choksi et al., 2006; Lee et al., 2006b).

Prospero’s ability both to repress and to activate transcription

suggested that cofactors and/or chromatin remodeling fac-

tors might modulate Prospero’s activity. Prospero is known to

function with a histone deacetylase (HDAC), Rpd3, to control

dendritic targeting in postmitotic neurons (Tea et al., 2010).

The vertebrate homolog of Prospero, Prox1, also interacts with

an HDAC (HDAC3; Shan et al., 2008) as well as with nuclear hor-

mone receptors (Liu et al., 2003; Steffensen et al., 2004; Lee

et al., 2009; Charest-Marcotte et al., 2010). To date, no factors

have been identified that act with Prospero in the switch from

self-renewal to differentiation.

Here, we show that the BTB-Zn finger transcription factor, Lola

(Seeger et al., 1993; Giniger et al., 1994), binds to a large number

of Prospero’s targets, including genes involved both in stem cell

self-renewal and differentiation. Furthermore, like Prospero, Lola

is a tumor suppressor protein. Intriguingly, however, the tumor
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Figure 1. Experimental Design for Identi-

fying a Prospero Cofactor

(A) An enriched motif was identified at regions

in the genome bound by Prospero. In the Pros-

pero DamID binding data example, the vertical

bar represents the log2 ration between the

Dam-Prospero signal and the Dam-only signal.

This motif identified was used in a yeast

one-hybrid screen to identify Lola splice isoform

N as a protein that can bind to this DNA

sequence.

(B) Structure of the lola locus. lola generates 25

different splice isoforms that all share a N-terminal

BTB domain but possess one of 17 differing

C-terminal zinc finger domains. The isoform

identified in the yeast one-hybrid screen is high-

lighted (Lola-N).
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cell of origin in lolamutants differs from that in prosperomutants.

Unlike prospero mutants where the first daughter of the neural

stem cell, the GMC, reverts to a stem cell-like state, in lola

mutants newly born neurons dedifferentiate, express stem cell

markers, and proliferate, resulting in brain tumors. We conclude

that, whereas Prospero acts to block self-renewal and initiate

neuronal differentiation, Lola is required to maintain the differen-

tiated state.

RESULTS

Identification of a Prospero Cofactor
Given that Prospero has the ability both to repress and activate

gene expression (Choksi et al., 2006), we reasoned that Pros-

pero is likely to act with proteins that are able to modulate its

activity. To identify the binding sites for potential cofactors, we

analyzed the DNA sequences near Prospero binding sites using

the motif discovery tool MICRA (Southall and Brand, 2009).

MICRA identifies enriched sequences at Prospero binding sites

by extracting and filtering for conserved sequences and calcu-

lating the relative frequency of each 6–10-mer as compared to

the background frequency throughout the genome. The most

enriched 6-mer at Prospero binding sites, to which Prospero

itself does not bind (Cook et al., 2003; Yousef and Matthews,

2005), is the conserved palindromic sequence, CGATCG

(166% enriched). Furthermore, alignment of the most enriched

8-mer generates a position weight matrix (PWM) containing a

core CGATCG sequence (Figure 1A). Members of the GATA

zinc finger transcription factor family (Bryne et al., 2008) bind a

similar sequence (GATDV, GATYDD).

To identify proteins that recognize this motif, we performed a

yeast one-hybrid screen using six copies of the motif as bait

and an embryonic cDNA library as prey. We isolated a specific

isoform of the BTB-zinc finger transcription factor Lola, Lola-N.

The lola locus generates 25 different splice isoforms encoding

20 proteins that share the same N-terminal BTB domain but

different C termini, which can encode one of 17 different zinc fin-

gers, or lack zinc fingers entirely (Goeke et al., 2003; Ohsako

et al., 2003) (Figure 1B). Each of these zinc fingers can potentially

bind a unique DNA sequence.
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Lola-N Is Expressed in Neurons
If Lola acts with Prospero, then we expected that the two pro-

teins would colocalize at some point in development. To deter-

mine the expression pattern of Lola-N, we generated an antibody

against its unique C terminus. Lola-N is expressed in embryos

from stage 11 onward in the differentiating layer of the ventral

nerve cord (VNC) but not in neuroblasts (Figures 2A and 2B).

Lola-N is expressed in all neurons, colocalizing with Elav, but

is undetectable in glial cells (Figures 2C and 2D). Lola-N is also

expressed in neurons of the larval and adult brain (Figure 2G

and Figures S1A–S1G available online).

During neural stem cell self-renewal, Prospero is segregated

from the neuroblast to the GMC. After the GMC has divided,

Prospero is present only transiently in the resultant neurons

(Spana and Doe, 1995). Lola-N expression is induced as Pros-

pero levels decrease, resulting in a brief period of colocalization

(Figure 2E) immediately before, and just after, GMC division, as

determined by phosphohistone H3 (PH3) labeling (arrowheads

in Figure 2F).

Lola-N is expressed in a similar manner in the larval CNS (Fig-

ures 2G and S1A–S1C), except that it overlaps more extensively

with Prospero in the central brain (Figure S1C) where Prospero is

present in at least a subset of postmitotic neurons (Bello et al.,

2006; Tea et al., 2010). Therefore, Lola-N is expressed at an

appropriate time and place to act with Prospero or to modulate

its activity.

Lola-N Represses Neuroblast Genes and Cell-Cycle
Regulators
To assess whether Lola binds to the same genes as Prospero,

we identified the embryonic binding sites of Lola-N throughout

the genome using DamID. Lola-N binds to 1,369 genes (false dis-

covery rate [FDR] < 0.1%) that show a highly significant overlap

(p < 63 10�71) with the 836 genes (FDR < 0.1%) bound by Pros-

pero. Two hundred fifty-nine genes are bound by both Prospero

and Lola-N (31% of Prospero’s targets; Figure 3A; Experimental

Procedures). This overlap is specific to Prospero and Lola-N

because only five of the 259 genes (2%) are bound by an

unrelated neural transcription factor (P. Wu and A.H.B., unpub-

lished data).



Figure 2. Lola-N Is Expressed in Neurons in the Developing Nervous System

(A and B) Lola-N protein is absent from neuroblasts and present in the differentiating, dorsal region of the VNC (lateral view, stage 14 embryo). Arrowhead

highlights a neuroblast.

(C) Colocalization of Lola-N and the neuronal marker Elav (ventral view, stage 16/17 embryo).

(D) Mutually exclusive expression pattern of Lola-N and the glial marker Repo (ventral view, stage 16/17 embryo).

(E) Lola-N and Prospero briefly overlap in differentiating cells of the VNC (lateral view, stage 14 embryo). Arrowheads identify example cells that express both

Lola-N and Prospero.

(F) Colocalization of low levels of Lola-N with PH3 in the VNC (ventral view, stage 13 embryo). Arrowheads show dividing GMC cells.

(G) Lola-N and Prospero expression in third instar larval brains.

Scale bars represent 20 mM. See also Figure S1.
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Analysis of the Lola-N binding peaks reveals that the most en-

riched 6-mer (CGATCG, 253% enriched) is identical to the motif

identified by MICRA analysis of the sequences associated with

Prospero binding peaks, as described above. The core CGATCG

sequence is again integral to a PWM generated from enriched

8-mer (Figure 3B) and provides independent support for the

yeast one-hybrid result.

Lola-N binds both neural stem cell genes and differentiation

genes (Figure 3A). Both Lola-N and Prospero bind key neuro-

blast genes and cell-cycle regulators (Figures 3C, 3E, and 3G),

including brain tumor (brat), deadpan (Hes family related),

dacapo (p27cip/kip), and string (cdc25). They also bind to

many Notch family genes, suggesting that Prospero and Lola-N
D

coordinately regulate this pathway. Interestingly a second iso-

form of Lola, Lola-T, has been shown to antagonize Notch during

specification of cell fate in the developing Drosophila eye (Zheng

and Carthew, 2008).

To determine how Lola-N regulates its target genes, we ex-

pressed Lola-N ectopically in stripes in the developing embryo.

In cells expressing Lola-N, driven by engrailed-GAL4, transcrip-

tion of the cell-cycle genes CyclinE and string (cdc25) is

repressed (Figures 3F and 2H). Transcription of the genes

encoding the neuroblast transcription factors, deadpan and

asense, is also repressed by Lola-N (Figures 3D, S2A, and

S2B). Therefore, like Prospero, Lola-N is able to directly bind

and repress neural stem cell genes. This is intriguing as Lola-N
evelopmental Cell 28, 1–12, March 31, 2014 ª2014 The Authors 3
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Figure 4. Loss of Lola Causes Brain Tumors

(A) prospero mutant clones result in tumors in the

adult brain, in both the central brain and optic lobe

regions.

(B andC) lolaE76mutant clones cause tumors in the

optic lobe regions of the adult brain. The tumors

express the neuroblast marker Deadpan (B) and

contain actively dividing cells (PH3; C).

(D) Expression of Lola-N in lolaE76mutant clones is

sufficient to rescue the tumor phenotype.

(E) actin FLP-out clones that express lola shRNAi

(induced during the second instar larval stage)

result in tumors in the adult brain (five out of nine

brains). Arrowheads highlight dividing cells (PH3).

(F) FLP-out clones that express both lola shRNAi

and Prospero do not cause tumors (11 out of 11

brains). Clones are marked with GFP.

Scale bars represent 100 mM. See also Figure S3.
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is first expressed just prior to the GMC’s terminal division (Fig-

ure 2F), at which point Prospero would already have repressed

neural stem cell genes. This suggests that Lola-N’s role might

be in maintaining, rather than in initiating, repression of these

genes.

Loss of lola Causes Tumors
If Lola-N is required to maintain the differentiated state, then the

loss of Lola might result in tumor formation, similar to what has

been observed in prospero mutants. Prospero is required to

block self-renewal and induce differentiation. As a result, the

loss of prospero leads to tumor formation in the developing

Drosophila nervous system. In prospero, mutant GMCs, which

would normally divide terminally to generate postmitotic neu-

rons, instead undergo self-renewing divisions (Choksi et al.,

2006; Lee et al., 2006b).
Figure 3. Transcriptional Targets of Lola-N

(A) Comparison of Lola-N and Prospero target genes in the developing embryo.

(B) Identification of the most enriched DNA motif at sites of Lola-N binding. In the Lola-N DamID binding data

between the Dam-Prospero signal and the Dam-only signal.

(C, E, and G) Lola-N and Prospero binding at the dpn, CycE, and string loci. The vertical bars represent the

Dam-only signal. Red bars indicate regions identified as being significantly bound.

(D, F, and H) Lola-N is sufficient to repress the expression of dpn, CycE, and string mRNA in the developing

See also Figure S2.
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We generated lolaE76 mutant clones

during larval stages using the MARCM

system (Lee and Luo, 2001). lolaE76 is a

protein null mutation, removing all iso-

forms of lola (Goeke et al., 2003). lolaE76

mutant clones proliferate extensively

and give rise to tumors in the adult brain

(Figures 4B and 4C). The mutant cells ex-

press the neuroblast transcription factor,

Deadpan (Figure 4B), and divide actively

as indicated by labeling with phosphohi-

stone H3 (Figure 4C). We observed a

similar phenotype with an independent

lola mutant allele, lola5D2 (Giniger et al.,

1994) (data not shown). lolaE76 mutant

clones form tumors in the optic lobe re-
gion of the adult brain (n > 30) but not in the central brain, in

contrast to prospero mutant clones, which can generate tumors

in both regions (Bello et al., 2006; Betschinger et al., 2006; Lee

et al., 2006b) (Figure 4A). Interestingly, Prospero expression per-

sists in the central brain but not in the optic lobe. It is conceivable

that Prospero is able to maintain the repression of neural stem

cell genes in the central brain in the absence of Lola. In support

of this hypothesis, ectopic expression of Prospero is able to

rescue the lola tumor phenotype (Figures 4E and 4F).

A previous study described the formation of tumors in the

larval central brain when lola was knocked down using RNAi

(Neumüller et al., 2011). However, RNAi is prone to off-target ef-

fects. We have never observed tumor formation in the central

brain in two different lola null mutants (lolaE76 and lola5D2), nor af-

ter expression of a small hairpin RNA (shRNA) (Ni et al., 2011) tar-

geting lola (Figure S6A). The same study reported a neuroblast
example, the vertical bar represents the log2 ratio

log2 ration between the Dam-fusion signal and the

embryo.
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underproliferation phenotype after knockdown of lola-N in neu-

roblasts. As lola-N is not expressed in neuroblasts, this is likely

also to be due to off-targets.

To test whether the loss of Lola-N is critical for tumor forma-

tion, we expressed lola-N in lolaE76 mutant clones. Expression

of UAS-lola-Nwas driven by elav-GAL4 to most closely replicate

wild-type lola-N expression. lolaE76 clones expressing lola-N

never form tumors (nine of nine brains; Figure 4D). In contrast,

neither Lola-F nor Lola-H is able to inhibit tumor formation

(C. Howard, T.D.S., and A.H.B., unpublished data). Interestingly,

ectopic expression of Lola-N is also able to suppress the

prospero mutant phenotype in embryos, preventing Deadpan

expression and cell proliferation (Figure S3). Therefore, like Pros-

pero, Lola-N acts as a tumor suppressor.

Neurons Lacking lola Dedifferentiate
Lola-N is expressed in postmitotic neurons, implying that there is

active repression of stem cell genes in postmitotic neurons and

raising the possibility that lola mutant tumors arise through the

dedifferentiation of neurons. To test this hypothesis, we investi-

gated the timing of tumor formation and the cell type of origin in

lola mutants.

In prospero mutants, tumors arise from GMCs that revert to

a stem cell-like fate, expressing neuroblast genes such as

Deadpan (Choksi et al., 2006; Lee et al., 2006b). In wild-type em-

bryos, Deadpan is expressed in neuroblasts, which lie ventrally

(red cells in Figure 5A). When Prospero moves into the nucleus

of GMCs, Deadpan expression is rapidly repressed (green cells

in Figure 5A). In lola mutant embryos, Deadpan is switched off

normally in GMCs (Figure 5B) but is then ectopically expressed

in the dorsal, differentiated layer of the VNC, where neurons

are positioned (arrowheads in Figure 5B). These cells are not

GMCs or newly born neurons as they do not express Prospero

(Figure 5B). To confirm that these cells are neurons, we cos-

tained with Fasciclin II, which is expressed in neurons but not

neuroblasts (Kristiansen and Hortsch, 2010). In wild-type em-

bryos, Deadpan (neuroblasts) and Fasciclin II (neurons) are never

coexpressed (Figure 5C); however, lolamutant neurons express

both Fasciclin II and Deadpan, both in the embryo (Figure 5D)

and in the larval optic lobe (Figure 5E). We observed Deadpan

coexpressed with two further neuronal markers, Cut and Elav

(arrowheads in Figures 5F and S4). Therefore, Deadpan is prop-

erly repressed in GMCs but is then derepressed in neurons.

Next, we followed the progression over time of lolaE76 mutant

clones in the larval optic lobe (Figures 6A–6C and S5C). The

timing and position of the Deadpan-expressing cells provided

further confirmation that neurons, rather than GMCs, are the

tumor-initiating cells. Initially, we observed only neurons in lola

mutant clones in the medulla cortex (�48 hr; only 1% of lola

mutant medulla cortex cells show Deadpan expression). By

�72 hr, Deadpan began to be expressed in regions of the

medulla cortex where only postmitotic neurons normally reside

(5% of lola mutant cells) (Figure 6B). By �96 hr, multiple

Deadpan-positive cells were found in mutant clones (17%) in

the differentiated outer medulla cortex (Figure 6C). We observed

ectopic expression of two further neuroblast genes, Asense and

Worniu, in the medulla cortex (Figures 6D and S5A). The expres-

sion of neuroblast genes coincides with cells entering the cell cy-

cle and actively dividing (Figure 6E). We observe PH3-positive
6 Developmental Cell 28, 1–12, March 31, 2014 ª2014 The Authors
cells in deep layers of the medulla cortex, indicating that the

lola mutant cells are actively proliferating in a region of the brain

where there is normally little or no cell division (Figure 6E,

compare lola mutant cells to surrounding wild-type neurons).

Consistent with us never observing tumors in the adult central

brain, ectopic Deadpan is not present in lola mutant clones in

the larval central brain (Figure S5B).

Knockdown of lola in neurons (elav-GAL4-driven expression of

a shRNA; Ni et al., 2011) results in dedifferentiation of neurons in

the optic lobe and the formation of tumors in the adult brain (Fig-

ures7BandFigureS6A).elav-GAL4was reported tobeexpressed

weakly in neuroblasts (Berger et al., 2007). To exclude the pos-

sibility that knockdown of lola in neuroblasts contributes to the

tumor phenotype, we drove lola shRNAi with GAL4C855a (Egger

et al., 2007). GAL4C855a is expressed in the neuroepithelium, in

optic lobe neuroblasts and inGMCs (FiguresS6C–S6E).Wenever

see tumors when lola is knocked down in these cell types. There-

fore, tumors arise only when lola is knocked down in neurons.

In addition, there is little or no expression of elav-GAL4 in neuro-

blasts in our clonal experiments (see Figure 7B). We conclude

that lolamutant neurons dedifferentiate, express stem cell genes,

and proliferate giving rise to brain tumors in the adult.

DISCUSSION

Our results reveal the temporal progression toward neuronal dif-

ferentiation. First, Prospero enters the nucleus of the newly born

GMC and initiates the repression of neural stem cell genes. Next,

Lola-N is expressed and maintains transcriptional repression in

postmitotic neurons, acting as a differentiation ‘‘lock’’ (Figures

7C and 7D). Transcription factors that act as differentiation locks

have been identified in other cell types (e.g., Pax5 in B cells;

Cobaleda et al., 2007), but not in neurons. Mutations like midlife

crisis (Carney et al., 2013), which lead to the transient derepres-

sion of neuroblast genes, are insufficient to cause neurons to

dedifferentiate and revert to a proliferating stem-cell-like state,

nor do they result in tumorigenesis.

We show that Lola-N is a potent repressor of neural stem cell

genes. Studies on vertebrate BTB-ZFs have revealed that they

act predominantly as transcriptional repressors (for review, see

Kelly and Daniel, 2006), although some, such as Miz-1, can act

as both repressors and activators (Adhikary et al., 2003). For

several BTB-ZFs, transcriptional repression is elicited through

HDACs, which deacetylate histones and promote a ‘‘closed’’

chromatin state (Kelly and Daniel, 2006). Therefore, as found

for vertebrate BTB-ZFs, Lola-N may act through HDACs to

achieve this repression.

The vertebrate proteins most similar to Lola are Zfp131, Miz-1,

and Leukemia-Related Factor (LRF). Of these, Zfp131 is ex-

pressed predominantly in the developing nervous system, the

adult brain, and the testes (Trappe et al., 2002), a similar expres-

sion pattern to that described for lola-N in flies (FlyAtlas; Chinta-

palli et al., 2007). Miz-1 is also expressed in neurons in the devel-

oping and adult mouse brain (Allen Brain Atlas; Lein et al., 2007)

and has a potent growth arrest function (Peukert et al., 1997).

Zfp131 and Miz-1 may be functionally analogous to Lola-N,

with respect to promoting ormaintaining neuronal differentiation.

That Lola-N represses cell-cycle genes in postmitotic neurons

seems surprising at first; however, there is a growing body of



Figure 5. In lola Mutants, Neuroblast Genes Are Switched Off in GMCs but Reexpressed in Neurons

(A) In wild-type embryos Deadpan is switched off in GMCs and remains off.

(B) In lolaE76 embryos Deadpan is switched off normally in GMCs; however, ectopic Deadpan is observed in the dorsal more differentiated region of the VNC (see

filled arrowheads). Less organized actin structures are observed in lolaE76 embryos, compared to wild-type (see empty arrowhead), due to disruption of axonal

projections.

(C) Expression of Deadpan and FasII in wild-type stage 15 embryos. Ventral view at the level of midline neuroblasts.

(D) Deadpan and FasII expression in lola mutant embryos. Arrowheads show cells expressing both Deadpan and FasII.

(E) Coexpression of Deadpan and FasII in lola mutant clones in the developing optic lobe. Arrowheads show cells expressing both Deadpan and FasII.

(F) Coexpression of Deadpan and Cut in lola mutant clones in the developing optic lobe. Arrowheads show cells expressing both Deadpan and Cut.

Scale bars represent 20 mM. See also Figure S4.
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evidence to suggest that neurons must continuously keep the

cell cycle in check (for review, see Herrup and Yang, 2007). Inhi-

bition of Retinoblastoma (Rb) in Purkinje neurons forces neurons

to reenter the cell cycle and replicate their DNA, but M phase is

not initiated and the neurons die (Feddersen et al., 1995). Simi-
D

larly, knockdown of Cdh1, which is required to prevent the accu-

mulation of cyclin B1 in neurons, causes neurons to enter S

phase and leads to apoptosis (Almeida et al., 2005). Therefore,

repression of cell-cycle genes is imperative as aberrant cell-cy-

cle activity in neurons can lead to neurodegeneration or cancer.
evelopmental Cell 28, 1–12, March 31, 2014 ª2014 The Authors 7



Figure 6. Time Course of Dedifferentiation in lola Tumors

(A–C) Time course of dedifferentiation in lola tumors. In the outer medulla cortex of the developing optic lobe, ectopic Deadpan is not observed until�72 hr after

clone induction (see arrowheads).

(D) Ectopic expression of the neuroblast gene Asense (see arrowheads).

(E) Ectopic division (PH3) is observed �96 hr after clone induction (see arrowheads).

Scale bars represent 20 mM. See also Figure S5.
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Growing evidence suggests that there is plasticity between

stem cells and their more differentiated progeny (Gupta et al.,

2009) and that some more differentiated cells, for example, in-

testinal secretory progenitors (van Es et al., 2012) and intestinal
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epithelial cells (Schwitalla et al., 2013), can initiate tumors. In

lola mutants, the tumor cells of origin are postmitotic neurons

rather than GMCs (Figure 7E). In contrast to prospero mutants,

GMCs differentiate normally in lola mutants, and Deadpan is



Figure 7. lola Mutant Neurons Dedifferentiate to a Neural Stem Cell Fate

(A and B) Knockdown of lola in the larval optic lobe medulla cortex causes neurons to dedifferentiate and express Deadpan (arrowheads in B). MARCM clones

expressing lola shRNAi in a subset of neurons are labeled in green.

(C) Schematic diagram showing the temporal expression of Deadpan, Prospero, and Lola-N during neuronal differentiation in embryos and the developing

optic lobe.

(D) Temporal expression of Deadpan, Prospero, and Lola-N during neuronal differentiation in the larval central brain.

(E) In thewild-type nervous systemProspero turns off neural stem cell genes, such as Deadpan, in GMCs. In prosperomutants, neural stem cell genes continue to

be expressed in GMCs, leading to overproliferation and tumors. In lola mutants, Prospero represses neural stem cell genes in the GMCs. However, in neurons,

without Lola to maintain repression, neural stem cell genes are reexpressed, and the cells dedifferentiate and form tumors.

See also Figure S6.
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repressed. Newly born neurons, however, dedifferentiate, reex-

press Deadpan, and undergo cell division resulting in adult

brain tumors.
D

Interestingly, the loss of lola does not cause tumor formation in

the central brain, where Prospero expression persists in neu-

rons. The diagrams in Figures 7C and 7D depict the expression
evelopmental Cell 28, 1–12, March 31, 2014 ª2014 The Authors 9



Developmental Cell

Neuronal Dedifferentiation and Tumorigenesis

Please cite this article in press as: Southall et al., Dedifferentiation of Neurons Precedes Tumor Formation in lola Mutants, Developmental Cell (2014),
http://dx.doi.org/10.1016/j.devcel.2014.01.030
of Deadpan, Prospero, and Lola-N, during neurogenesis in wild-

type and lola mutants. In lola mutant embryos and larval optic

lobe clones, Prospero is switched off in neurons and Deadpan

is reexpressed (Figure 7C). However, in the larval central brain,

Prospero remains on in neurons (Figure 7D). We have shown

that Prospero expression can rescue the lola tumor phenotype

(Figures 4E and 4F); therefore, the persistence of Prospero in

central brain neurons may explain why Deadpan is not reex-

pressed and why tumors are not observed in the adult central

brain.

We hypothesize that Lola maintains the repression of neural

stem cell genes until they transition to a more permanent

‘‘off state.’’ BTB-zinc finger proteins are known to recruit

HDACs, and this may be the mechanism by which target

genes are more permanently locked down. In support of this

hypothesis, we find that knockdown of lola in adult flies

is no longer sufficient to cause neuronal dedifferentiation

(Figure S6B).

A long-term goal of regenerative medicine and stem cell

research is to convert cells in vivo to specific fates to allow for

the repair of damaged or diseased tissues. The ability to induce

neurons to dedifferentiate, followed by directed differentiation

to neurons of choice, would be an ideal method of repair. Mature

neurons have been shown to dedifferentiate when p53 and NF1

are knocked down simultaneously. However, this leads to

genome instability resulting in gliomas (Friedmann-Morvinski

et al., 2012). Our data suggest that a single factor can maintain

the global repression of both cell-cycle genes and neural stem

cell genes in postmitotic neurons. Factors such as Lola would

be excellent targets for realizing the goal of controlled dediffer-

entiation of neurons in vivo.

EXPERIMENTAL PROCEDURES

Fly Lines

UAS-lola-N, UAS-lola-H, UAS-lola-F, and UAS-Dam-lola-N flies were gener-

ated by PCR amplifying the full coding sequences from an embryonic

cDNA library and cloning it into pUASTattB (Bischof et al., 2007) and

pUAST-NDam (Choksi et al., 2006), respectively (for primer sequences, see

Supplemental Experimental Procedures). Transgenic flies were generated

as previously described (Choksi et al., 2006). UAS-lola-shRNAi (based

on the approach described by Ni et al., 2011) was generated using the

method available on the TRiP website (http://www.flyrnai.org/supplement/

2ndGenProtocol.pdf) using the passenger strand sequence CACGACA

GATCTCAGGATGAA and the pWALIUM20 vector. MARCM clones were

generated using the following driver lines: elav-GAL4, UAS-mCD8-GFP,

hsFLP; FRT42D, tub-Gal80/CyO and tub-GAL4, UAS-nuGFP, hsFLP;

FRT42D, tub-Gal80/CyO, and the following FRT lines: lolaE76, FRT42D/CyO,

lola5D2, FRT42D/CyO, lolaE76, FRT42D/CyO; UAS-lola-N/TMBb, and

FRT42D; UAS-lola-shRNAi. lolaE76 is a protein null mutation, removing all iso-

forms of lola (Goeke et al., 2003). lola5D2 (P-element insertion at the transcrip-

tional start site) is a strong hypomorph for lola (Giniger et al., 1994). w1118

were used as wild-type flies for immunohistochemistry experiments.

Yeast One-Hybrid

The yeast one-hybrid assay was performed using the Matchmaker Yeast

One-Hybrid kit (Clontech) and protocol. To make the DNA bait construct,

we first modified the Clontech bait vector pHis2.1 to make it compatible

with our cDNA library by replacing the Trp selection gene with the Leu selec-

tion gene to give pHis2.2. An oligo with six copies of the bait site interspersed

with random 5-mer (Supplemental Experimental Procedures) was annealed to

its reverse complement and cloned into pHis2.2 using MluI and SpeI. This

was transformed into Y187 yeast. One hundred micrograms of a 4–17 hr
10 Developmental Cell 28, 1–12, March 31, 2014 ª2014 The Authors
embryonic cDNA library (with cDNAs fused to an activator domain)

was transformed into yeast carrying the bait construct and plated onto

�His/�Leu/�Trp selective media containing 50 mM 3-AT. Positive colonies

were picked, suspended in 0.2% SDS, heated at 95�C for 5 min, and centri-

fuged, and the supernatant was purified using a QIAGEN PCR purification kit.

For sequencing, the cDNA inserts were PCR amplified (for primer sequences,

see Supplemental Experimental Procedures) and sequenced using the

forward primer.

Immunohistochemistry

Larval and adult CNS were dissected in PBS and then fixed for 15–20 min in

PBS containing 4% formaldehyde (ultra pure), 0.5 mM EGTA, and 5 mM

MgCl2. Wash solution was PBS with 0.3% Triton X-100. The anti-Lola-N

antibody was generated by synthesis of the peptides GVELDSIDDTMTEV

and GSPLSWTYDAVKIC (corresponding to the unique C-terminal region)

and injection into rabbits (Moravian Biotechnology). Serum was purified

using the GVELDSIDDTMTEV peptide and used at a concentration of

1:10. Other primary antibodies used were chicken anti-GFP (1 in 2,000)

(ab13970, Abcam), mouse anti-Discs Large (c) (1 in 70) (4F3, Developmental

Studies Hybridoma Bank [DSHB]), rat anti-Elav (c) (1 in 70) (7E8A10, DSHB),

mouse anti-Fas II (c) (1 in 20) (1D4, DSHB), guinea pig anti-Deadpan

(1 in 500) (J.B. Skeath), mouse anti-Repo (c) (1 in 70) (8D12, DSHB), rabbit

anti-PH3 (1 in 100) (06-570, Upstate), rat anti-PH3 (1 in 150) (ab10543,

Abcam), mouse anti-Prospero (c) (1 in 70) (MR1A, DSHB), mouse anti-Cut

(c) (1 in 30) (2B10, DSHB), rat anti-Worniu (0.8 in 1) (C.Q. Doe), rabbit

anti-Asense (1 in 1000) (Y. N. Jan). Appropriate combinations of Alexa-

coupled secondary antibodies (Invitrogen) were subsequently applied.

Phalloidin-546 (Invitrogen) was used for actin staining (1 in 100). Samples

were analyzed with a Leica SP2, Leica SP5, or Zeiss LSM510 confocal

microscope. Adobe Photoshop and Illustrator were used to generate

figures.

DamID

Preparation of Dam-methylated DNA from stage 10–11 embryos was per-

formed as previously described (Choksi et al., 2006). The Dam-only and

Dam-Lola-N samples were labeled and hybridized together on a whole

genome 2.1 million feature tiling array, with 50- to 75-mer oligonucleotides

spaced at approximately 55 bp intervals (Nimblegen systems). Arrays were

scanned and intensities extracted (Nimblegen Systems). Three biological rep-

licates (with one dye-swap) were performed. Log2 ratios of each oligo were

median normalized.

DamID Analysis

A peak finding algorithm with FDR analysis was used to identify significant

binding sites (Wolfram et al., 2012) (PERL script available on request). All peaks

spanning four or more consecutive probes (greater than�900 bp for low-den-

sity arrays and greater than�400 bp for high-density arrays) over a 2-fold ratio

change were assigned a FDR value.

Motif Analysis

A perl program was used to identify peak structures within the DamID data

(script available on request), and the top 1,000 peaks (based on peak height)

were analyzed using the MICRA program (Southall and Brand, 2009). Lola-N

data were first converted to release four coordinates before running MICRA.

To generate a PWM from enriched 8-mer, the top 50 enriched 8-mer were

analyzed by MEME-ChIP (Machanick and Bailey, 2011), with their abundance

represented in the input fasta file.

In Situ Hybridizations

In situ hybridization was performed as previously described (Choksi et al.,

2006). For primer sequences used to generate in situ probes, see the Supple-

mental Experimental Procedures.

ACCESSION NUMBERS

The DamID-chip data have been deposited in the National Center for Biotech-

nology Information Gene Expression Omnibus under accession number

GSE53447.

http://www.flyrnai.org/supplement/2ndGenProtocol.pdf
http://www.flyrnai.org/supplement/2ndGenProtocol.pdf
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Ziegler, P.K., Canli, O., Heijmans, J., Huels, D.J., Moreaux, G., et al. (2013).

Intestinal tumorigenesis initiated by dedifferentiation and acquisition of

stem-cell-like properties. Cell 152, 25–38.

Seeger, M., Tear, G., Ferres-Marco, D., and Goodman, C.S. (1993). Mutations

affecting growth cone guidance in Drosophila: genes necessary for guidance

toward or away from the midline. Neuron 10, 409–426.

Shan, S.F., Wang, L.F., Zhai, J.W., Qin, Y., Ouyang, H.F., Kong, Y.Y., Liu, J.,

Wang, Y., and Xie, Y.H. (2008). Modulation of transcriptional corepressor ac-

tivity of prospero-related homeobox protein (Prox1) by SUMO modification.

FEBS Lett. 582, 3723–3728.

Southall, T.D., and Brand, A.H. (2009). Neural stem cell transcriptional net-

works highlight genes essential for nervous system development. EMBO J.

28, 3799–3807.

Spana, E.P., and Doe, C.Q. (1995). The prospero transcription factor is asym-

metrically localized to the cell cortex during neuroblast mitosis in Drosophila.

Development 121, 3187–3195.
12 Developmental Cell 28, 1–12, March 31, 2014 ª2014 The Authors
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